Turning Contract Library into
Executable Contracts

Y nedl
L labs

Ashish Jaiman
Founder & CEO

nedl
A labs

Executive Summary

Most payers have already invested in contract centralization, a “library” that improves
access to provider agreements, amendments, exhibits, and fee schedules. That
investment typically succeeds at storage and transparency (find it, read it, benchmark
it) but fails at execution and integrity (price the claim correctly, consistently, and
explainably).

Payer’'s environment, deep amendment history, entity complexity, carve-outs, “lesser-of”
clauses, and negotiated exceptions create a predictable failure mode. Contracts are
visible but not operational. Claims then drift to base terms, stale fee schedules, or
generic pricing logic.

The result is leakage, avoidable provider abrasion, weak audit defensibility, and
renewal negotiations that lack clause-level proof.

Nédl Labs is an activation layer for contract execution. We convert “contracts” into
executable, versioned, clause-traceable logic. This governed “contract-as-code”
system can drive pre-pay repricing, post-pay defensible audit, contract-abuse detection,
and negotiation intelligence.
https://www.linkedin.com/pulse/contracts-executable-code-ashish-jaiman-18qgne/

The Core Problem:
“Contracts Library” # “Contracts Execute”

Traditional Contract Lifecycle Management (CLM) and compliance tools are designed
primarily for lawyers and strategists, not for payment engines. While they excel at
document organization, workflow compliance, and market-rate benchmarking, they
struggle with deterministic execution

https://www.linkedin.com/pulse/contracts-executable-code-ashish-jaiman-18qne/

nedl
labs

Contract Drift is the Default Outcome

Even with a clean repository, payment outcomes drift because the adjudication stack
typically:

e Prices against a base agreement while missing subsequent amendments.
e Applies generic global edits that ignore contract-specific intent.

e Uses stale fee schedules or misapplied effective dates.

e Cannot reconcile exceptions and “stacking logic” across multiple layers.

This drift isn't “/human error” alone; it's structural. Contracts are written for humans, yet
pricing must be deterministic, real-time, and auditable.

Amendment Sprawl Breaks “Read-Only” Systems

Over the years, a single provider relationship accumulates massive complexity:

e The Stack: Base agreement + multiple amendments + exhibits + fee schedules.

e The Conditions: Carve-outs by place of service, specialty, code ranges, modifiers, and
network tiers.

e The Math: “Lesser-of” logic, caps/floors, stop-loss/outlier methodologies, and
bundling rules.

e The Exceptions: Negotiated terms that override global edits.

A repository can store and display this complexity. Still, it cannot reliably answer the
only question that matters at claim time: “What is the correct payment method for this
claim, today, for this entity/network, under the current term hierarchy?”

The Audit/Appeal Problem is Really a "Provenance’
Problem

When providers dispute reimbursement or the payer challenges billing patterns, the
hard part is proving the logic chain. Without clause-level provenance, both sides end up
in expensive, abrasive loops trying to prove:

e Which contract version was active?

e Which clause controlled?

e Which inputs were used?

¢ How was the math applied?

e Why did an exception trigger (or fail to trigger)?

These platforms potentially can answer “what does the contract say,” but they cannot
answer “how do | mathematically execute this conflict-resolved logic on Claim #123?"
Ultimately, they serve as excellent digital filing cabinets, whereas Payer requires a digital
calculator to solve the execution gap.

nedl
) labs

The Néedl Labs Core: Neuro-Symbolic Architecture

The "Al Dilemma” in Payment Integrity

To solve the "Contract Execution" problem, you need two contradictory capabilities: the
flexibility to read human language and the rigidity to execute audits. Existing market
solutions fail because they pick only one side:

e Pure Generative Al (The "Hallucination” Risk): Al is a probabilistic predictor. They
are excellent at summarizing a 50-page PDF, but dangerous for math. They cannot
guarantee that $100 + 10% will equal $110 every time, nor can they reliably execute
multi-step logic without "drifting."

e Pure Symbolic/Rule Engines (The "Brittleness" Risk): Traditional rule engines
(e.g., Drools) are deterministic but blind. They cannot read scanned PDFs,
understand nuances of the "lesser-of" rule, or interpret a messy layout where a
footer modifies a table. They break the moment the input format changes.

The Solution: System 1 (Perception) + System 2 (Logic)

Nédl| Labs has developed a Neuro-Symbolic architecture that decouples
"Understanding" from "Execution." We use Compound Al to read the contract and
Symbolic Logic to enforce it.

The "Neuro' Layer (Perception & Normalization)

e Role: The "Reader & Extractor" that handles unstructured chaos.

e Tech Stack: Compound Al (Clinical Models, Vision Encoders, Meta extractors, ...)
¢ Function:

o Semantic Segmentation: Ingests messy PDFs, identifying boundaries
between Base Agreements, Amendments, and Exhibits.

o Entity Extraction: Normalizes varied terms ("Facility," "ASC," "Site of Care")
into a canonical ontology.

o Auto-formalization: This is our key innovation. The Al does not calculate the
rate; it translates the natural-language clause into an Intermediate
Representation, a structured pseudo-code representation of the clause's
intent that does not execute the calculation.

The "Symbolic" Layer (Reasoning & Execution)
¢ Role: The "Calculator" that guarantees 100% auditability.
e Tech Stack: Knowledge Graphs + Constraint Solvers (Python/Prolog).
¢ Function:
o Temporal Resolution: We model contracts not as documents, but as a Time-
Valid Graph. Nodes (Terms) and Edges (Relationships) have specific validity

i

nedl
labs

windows. The system traverses the graph to find the exact active path for a
specific Date of Service and resolves stacking amendments deterministically.
o Constraint Satisfaction: We execute the Intermediate Representation as
rigid logic.
» /nput: min(Billed Charges, (Medicare Rate * 1.10))
» Execution: The solver fetches the variables and computes the result. It
cannot hallucinate because it is bound by mathematical constraints.
o Traceability: Every output is linked to a "Proof Tree”, a digital thread
connecting the final dollar amount back to the specific logic step and the
original PDF source text.

The Result: A "Transparent Glass Box" System

By combining these approaches, we achieve what neither can do alone:

Flexibility of Ingestion: We accept dirty data (scans, emails, PDFs, filesystems,..).

Certainty of Execution: We deliver audit-grade, reproducible financial outcomes.
Transparency of Logic: We provide a "Transparent Glass Box" view where every

decision is fully explainable, unlike the "Black Box" of pure Neural Networks.

The Executable Contract System

Think of the N&dl| Labs solution as three tightly coupled layers that transform static
documents into active financial controls.

Contract Intelligence Layer (Understanding + Structuring)

The "Perception Engine" that converts unstructured chaos into structured assets.

Clause Inventory: Every clause becomes an addressable object with a unique ID.
Normalized Terms: Standardizing rates, formulas, code sets, conditions, and
exceptions into a common data model.

Entity Model: resolving the complex "Who" and "Where" (Provider, Network Tier,
Plan, Geography, Site-of-Service, and Effective Dates).

Amendment/Addenda Graph: A temporal map of precedence rules, explicitly
tracking what overrides what to resolve conflicts between documents.

Contract-as-Code Layer (Compilation + Governance)

The "Compiler" that turns structured data into governed, executable logic.

Formal Rule Representation: Converts terms into a Domain Specific Language
(DSL) or structured rules engine.

nedl
labs

e Versioned "Contract Packages": Creates a specific, versioned logic package for
every Provider/Entity/Network combination.
¢ Automated Test Suite:
o Unit Tests: Validates individual clause logic.
o Regression Tests: Re-runs historical claims to ensure accuracy and catch
unintended variance.
¢ Change Control: Full governance including diffs across versions, approval
workflows, and immutable audit logs.

Execution & Evidence Layer (Runtime + Explainability)

The "Engine" that powers adjudication and defends the result.

e Pricing/Repricing Runtime: A high-performance API (or batch process) for real-time
adjudication.

¢ Per-Claim Trace: Generates a complete lineage for every decision: Inputs — Rules
Fired — Clause Citations — Math — Payment.

e Evidence Packs: Automated documentation generation for audits, appeals, and
negotiations.

¢ Active Monitoring: Continuous detection of drift, anomaly signals, and rule
coverage gaps.

Y
nedl
A labs

Contract-to-Execution Pipeline o INGEST @ COMPUTE @ EXECUTE

End-to-End Architecture: From Ingestion to Governance

D Ingest [}

Inputs & Artifacts

NPUTS
Base agreements, amendments, exhibits, addenda
Fee schedules, rate sheets
Embedded policy references
Correspondence for exceptions

KEY ACTIONS
Secure ingestion + metadata
Document fingerprinting

OCR & Layout parsing

o Hierarchy °

Resolution Logie

PRECEDENCE GRAPH
Base — Amended — Superseded
Carve-outs & Overrides
Lesser-of [Greater-of logic
Global vs. Provider exceptions

OUTPUT

Active Term Resolution Engine

Depl
& eploy °

Workflow execution

NTEGRATION PATTERNS
Pre-pay repricing API
Batch repricing runs
Sidecar validation

Post-pay audit engine

PRINCIPLE

Staged adoption (No big-bang)

< Structure

=
=~ Segmentation

WE SEGMENT INTO:
Sections, headings, clauses
Tables (columns, units, ranges)

References ('see Exhibit B')

ouTPUT

Clause Map: ID + Location + Snippet

o1 Compile
Deterministic Rules

LOGIC TRANSLATION
IF/THEN conditions
Numeric formulas & Table lookups

Effective date gating

RESULT

Executable Ruleset (Contract-as-Code)

D Explain

Audit Trails

EVIDENCE PACK
"Why' narrative (human readable)
Clause & Rule IDs
Math trail (deterministic steps)

Exception rationale

ra Extract [
“ 4 Normalize Terms
EXTRACTION

Payment methodologies (FFS, DRG)
Code scopes & Modifiers

Limits (caps/floors, bundling)

NORMALIZATION
Canonical code sets
Entity mapping

Ambiguity resolution

@ Validate 3

QA & Testing

METHODS
Clause unit tests
Regression on historical claims
Human review gueues

Confidence scoring

OUTPUTS
Quantified leakage patterns

Rule coverage metrics

IEI Govern]

Sustainability

CONTROLS
Versioning of contract packages
Amendment ingestion workflew
Audit logging

Drift monitoring

Practical Outcomes: What Payer Gets

We deliver three specific business results that shift the focus from "managing
documents" to "managing spend."

Elimination of "Contract Drift" (Pre-Pay)

The Outcome: Claims are paid against the exact active amendment hierarchy for that
specific date of service, not a stale base agreement.

The Value: We stop the 3-5% of frequent leakage caused by missed fee schedules or
addenda during adjudication.

nedl
labs

"Hard Denial" FWA Detection

The Outcome: We move from generic "anomaly detection" (which is easily appealed) to
Intent-Based Denials. We flag billing patterns that technically pass code edits but
mathematically violate specific contract clauses (e.g., bundling rules or exclusions).

The Value: Converts "soft" recoveries into defensible, hard savings that hold up to
provider challenge.

Negotiation Leverage ($)

The Outcome: Negotiators enter renewals with a "Clause-Level P&L." We quantify
precisely how much specific terms (like Stop-Loss thresholds or Carve-Outs) cost the
plan last year.

The Value: Enables data-driven counter-offers, potentially saving millions in future
contract cycles.

Success Metrics (KPIs)

We measure success by Financial Integrity, not "Al Accuracy."

Metric Key Performance Target / Goal
Category Indicator (KPI)
Financial Identified Variance ($) Total dollar value of leakage found vs.
Impact baseline historical pricing.
Drift Reduction (%) % decrease in claims paid on stale/expired
contract terms.
Operational Amendment Cycle Reduction in time to operationalize a new
Speed Time amendment (from months to days).
Defensibility Trace Completeness % of high-value claims with a complete
(%) Payment Math Clause audit trail.
Coverage Spend Governed (%) % of total provider spend is now governed
by "Executable" rules rather than manual
review.

nedl
labs

Use Case
Category

Payment
Integrity (Pre-
Pay)

Complex Logic
Execution

FWA &
Anomaly
Detection

Contract
Negotiations

The Current "Filing
Cabinet"” Gap
(Status Quo)

"Contract Drift":
Claims are
adjudicated against
outdated Base
Agreements because
recent addenda are
trapped in
PDF/image formats.

Static Lookup:
Cannot handle
"Lesser-Of" or "Stop-
Loss" clauses that
require real-time
math (e.g., "Pay 110%
of Medicare OR Billed
Charges").

Code-Based Edits:
Only catches
standard coding
errors (e.g.,
duplicates). Misses
"Contract Abuse"
where providers
technically pass edits
but violate intent.

Aggregate
Guesswork:
Negotiators rely on
high-level averages,
unaware of specific

The Nedl
"Executable" Fix
(Proposed Solution)

Temporal Knowledge
Graph: The engine
automatically selects
the currently active
rate path (traversing all
amendments) based
on the specified Date
of Service.

Symbolic Solver:
Dynamically calculates
multiple pricing
scenarios in real-time
and enforces the
"Lesser-Of" logic
deterministically.

Intent-Based
Detection: Extracts the
intent of a clause (e.g.,
"Add-on code valid only
with complex surgery")
to flag abusive billing
patterns.

"What-If"
Simulations: Re-run
historical claims
against hypothetical
terms (e.g., "What if we
raise the Stop-Loss

Business Impact
(ROI)

Eliminates 3-5% of
pre-pay leakage
caused by using
expired rates.

Prevents
overpayments on
high-dollar claims
by enforcing
complex caps.

Identifies ~10-15%
more recoverable
than standard
rules engines.

Empowers data-
driven renewals,
potentially saving
millions in future
spend.

nedl

labs

Provider
Onboarding

Contextual

Benchmarking

Feature /
Capability
Primary
Value Prop

Core
Technology

Handling
llMathll

Handling
"Time"

clauses driving
unprofitability.

Manual Entry: Takes
30-90 days to
interpret and
manually load
complex contracts
into the adjudication
system.

Disconnected Data:
Negotiators lack a
precise "apples-to-
apples" view of
market rates
because external
transparency files

threshold?") to predict
exact variance.

Auto-Ingestion:
"Neuro" layer extracts
fee schedules and rules
from PDFs instantly,
auto-populating the
logic engine.

Market
Normalization: Ingests
public transparency
data and maps it
through the same logic
engine to align external
market rates against

Reduces
operational
backlog and
provider abrasion;
accelerates "Time-
to-Value."

Identifies
immediate rate
compression
opportunities
(e.g., "We pay 9%
above market for
this code") for

(MRFs) are too messy Payer’s internal actionable
to map complex "Executable Rates." leverage.
internal terms.
Nedl Labs Doczy (Arete) Turquoise Icertis (ICI)
Health
Payment Productivity Transparency Compliance
Execution (Paying (Helping humans (Benchmarking (Legal
claims accurately) read faster) market rates) workflow &
storage)
Neuro-Symbolic Generative Al Data Traditional
Al (LLM + Logic (RAG + Chatbot) Aggregation CLM
Graph) (MRF Parsing) (Workflow +
Rules)
Deterministic Probabilistic Benchmark- Metadata-
(Calculates (Guesses/Summari based (Compares based (Tags
"Lesser-Of" zes text) vs. Market) fields,
precisely) doesn't calc)
Temporal Graph Static Search Snapshot Version
(Resolves (Finds the doc, (Current Rate Control
addenda conflicts) misses the focus) (File-level,
timeline) not Logic-
level)

nedl

A labs
Output JSON / Python Text Summary Rate Table / Signed PDF
Format Code (Machine (Human Readable) Dashboard (Legally
Executable) (Strategy Binding)
Readable)
The "Kill" "We stop pre-pay "They summarize "They show you "They store
Argument /eakage.” the leakage." the market price, the contract;
not your price." they don't
execute it."

Conclusion: Turning a Sunk Cost into a

Strategic Asset

Payers do not need another software tool to store contracts; it requires an engine to
execute them. The previous investment in a "Contract Library" likely failed not because
the digitization technology was ineffective, but because it was never designed for
adjudication. It built a library when you needed a calculator.

Nedl Labs offers a clear path to fix this. We do not ask you to rip and replace your
existing infrastructure. Instead, we propose to sit on top of it, ingesting the static
artifacts you already have and converting them into the dynamic, executable logic your
claims system is missing.

By validating this with a targeted pilot on your most complex, high-variance contracts,
we will prove that the solution to "Contract Drift" isn't more manual review, it's better
math.

We are ready to start immediately.

About the Author

Nédl Labs

Nédl Labs is pioneering Al-native payment integrity solutions for healthcare payers. Our
neuro-symbolic Al platform combines neural networks' pattern recognition with
symbolic reasoning's explainability, enabling payment integrity systems that
simultaneously reduce leakage and build provider trust.

Nédl brings deep expertise in responsible Al, healthcare policy, and enterprise product
development to the payment integrity challenge.

10

nedl
A labs

Contact:

Ashish Jaiman
Founder & CEO, NédI Labs,
Neuro-Symbolic Al for Payment and Revenue Integrity

Web: www.nedllabs.com

Email: ashish@nedllabs.com

LinkedIn: linkedin.com/in/ashishjaiman

Locations: Washington, D.C. | Silicon Valley | Dallas, TX

© 2026 Neédl Labs. All rights reserved.

This white paper is provided for informational purposes only. No part of this publication
may be reproduced without written permission.

The information contained herein is subject to change without notice. This document is
not a commitment to provide any particular product, feature, or service.

11

http://www.nedllabs.com/
mailto:ashish@nedllabs.com
https://www.linkedin.com/in/ashishjaiman

